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Discrete Stochastic Control for Energy Management 
With Photovoltaic Electric Vehicle Charging Station

Suwaiba MATEEN, Ahteshamul HAQUE, Varaha Satya Bharath KURUKURU, and Mohammed Ali KHAN

Abstract—This paper develops an intelligent energy manage-
ment system for optimal operation of grid connected solar pow-
ered electric vehicle (EV) charging station at workplace. The op-
timal operation is achieved by controlling the power flow between 
the photovoltaic (PV) system, energy storage unit, EV charging 
station (EVCS) and the grid. The proposed controller is developed 
considering the PV availability, grid loading and the EV charging 
load data. This information is modelled using Markov decision 
process (MDP) to develop a control strategy that eliminates the 
conventional problem of immediate recharging of energy storage 
unit after each EV charging by setting a target state of charge 
(SOC) level. This maximizes the use of PV power for EV charging 
and minimizes the impact on the grid. To test the operation of 
the proposed controller, a charging station powered by a 5 kW 
PV system with 35 kW energy storage unit connected to grid is 
developed through numerical simulations and experiment. The 
experiments were carried out for three different conditions un-
der varying irradiance profile and load profile for multiple days. 
The results estimated the EV load and PV power and optimized 
the energy storage unit SOC between 0.3-1. Further, the energy 
management strategy minimized the impact of energy exchange 
between the grid and charging station by a factor of 2. 

Index Terms—Bidirectional inverter, electric vehicle charging 
station, energy management system, photovoltaic power, state of 
charge.

I. Introduction

THE varying charging requirements of electric vehicles 
(EV’s) and nonlinear photovoltaic (PV) power generation 

in the operation of a grid connected PV powered EV charging 
stations (EVCS), pose a challenge for the utility [1]. Conven-
tionally, methods to handle these challenges deal with upgrad-
ing the distribution infrastructure [2], [3], but they proved to 
be economical during the operation process. To overcome this, 
the approaches for allowing high penetration of EVCS and PV 
power generation into the present distribution infrastructure is 
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achieved by developing PV powered EVCS equipped with a 
battery unit [4]. These systems provide reliable power supply 
for EV charging while maintaining or improving PV system 
value, and utility system reliability.

Generally, an increased electricity generation connected to 
the low-voltage grid, such as PV power generation, requires 
flexible voltage regulation on both the transmission and 
distribution grid [5], [6]. Furthermore, the future electricity 
system will require not only flexible power generation, but 
flexible power usage as well. This way, excessive current loads 
on the local grid can be prevented. One way of achieving this 
would be by adjusting the electricity price on an hourly basis. 
This would encourage increased electricity usage when prices 
are low resulting in variations for peak and off peak demands 
[7]. In addition, reduced charging powers and assigning EV’s 
with a unique starting time were proposed as flexible solutions 
to reduce grid loads caused by charging currents [8], [9]. 
However, this prohibited the possibilities for fast charging and 
resulted in irregular charging patterns especially during peak 
hours [10]. Further, a wide literature is available on the lenient 
charging patterns [11] for solar powered EVCS with energy 
storage devices [12]–[15]. Most of these studies are aimed 
at immediate recharging of the battery unit after each EV 
charging event [16]. To overcome this, an intelligent controller 
needs to be developed considering the impact of nonlinear PV 
power generation and EV charging load profiles to reduce the 
impact of energy exchange on the grid.

In [17], a charging strategy for PV based battery switch 
station is developed by considering the self-consumption and 
service availability of the PV energy. The developed approach 
defines the evaluation indices for operating performance 
and develops the charging method by including the battery 
swapping service and power distribution model. In [18], 
an optimal power management technique for PV-battery 
powered EVCS is developed using particle swarm optimization 
and dynamic programming to continuously minimize the 
operation cost. Further in [19], a fleet of grid connected 
charging stations are controlled with an approximate dynamic 
programming method to achieve minimum cost requirements 
by considering the user preferences. In [20], the high energy 
costs of storage while overcoming the intermittency effects of 
home PV systems are minimized by developing an efficient 
energy management approach utilized the EV batteries. The 
developed strategy aids in reducing the unexpected peak 
power demand by implementing vehicle-to-grid (V2G) and 
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improves the stability of the grid during peak load. In [21], a 
grid connected PV based residential EV charger is developed 
to cater the needs of household loads, EV and the grid. The 
charger operates autonomously with PV array to power the 
households by providing uninterruptable charging. Similarly in 
[22], a multimode control strategy is developed to coordinate 
between PV array, battery, and diesel generator based charging 
station to provide continuous charging and uninterruptible 
supply to the household loads. Further, a cooperative energy 
management strategy for PV-energy storage system based 
EVCS is developed using multiagent deep reinforcement 
learning approach [23]. The developed approach estimates 
the scheduling solutions of multiple EVs to achieve desirable 
performance and reduced cost operations. 

From the above literature, it is desired to identify that 
the uncertain behaviors of EV users, and various boundary 
conditions pertaining to intermittent nature of PV may 
significantly affect the optimal charging strategy. In order to 
address this problem, the EV user behavior and the PV power 
generation needs to be predicted. However, this problem is 
regarded as an multi stage decision making process where the 
present state of the system is dependent on all the previous 
states and actions. In light of these issues, this paper aims at 
estimating the feasibility of including real-time weather and 
load information with an energy management system for 
a PV-EVCS with energy storage system (ESS). The major 
contributions of this research are:

•	 It develops an intelligent EMS for PV assisted EV 
charging station by utilizing the PV power forecasting, 
and demand side energy management data.

•	 The Markov decision process (MDP) framework is 
adapted to provide flexibility while developing the EMS 
for handling the real-time dynamics of the PV assisted 
EV charging station.

•	 The proposed approach when implemented with an 
optimal SOC operation of Buffer battery-based PV 
assisted EV charging station minimizes the peak demand 
on the local grid during EV charging event and maximize 
the use of PV power generation. 

•	 Estimates the power generation, EV charging demand, 
and optimal SOC based on the historical generation, 
charging patterns, and optimized SOC with the proposed 
EMS.

The novelty of the proposed approach lies in maximizing 
the PV power generation for EV charging and minimizing the 
impact on utility especially during peak loading on the grid. 
Further, the proposed approach doesn’t require the information 
related to EV arrival and departure times to achieve the energy 
management process. It also provides flexibility for the EVCS 
aggregator and distributed generation companies in forecasting 
and planning their daily power consumption and generation 
activities. More details on these aspects are discussed in 
the remaining sections of the paper as: In Section II, the 
design considerations, and the requirements for developing 
the intelligent EMS for the PV powered EVCS in the grid 
connected environment are identified. The development of the 

proposed energy management system is discussed in Section 
III, and in Section IV, the implementation of the developed 
EMS with the PV powered EVCS is analyzed with both 
simulation and experiments. The conclusion of the research is 
discussed in Section V.

II. System Design and Requirements

A. Design Considerations

The effect of EV charging and the PV power generation 
on the utilities is analyzed by simulating a grid connected 
PV-EVCS with an energy storage system (battery unit). The 
maximum power point tracking (MPPT) for the PV is achieved 
with the perturbation and observation (P&O) algorithm 
controlling a boost converter at the PV array output terminals. 
Further, the design process of the system is achieved by 
considering two different situations of charging the battery unit 
from the grid. In the first situation, the battery charging occurs 
immediately after an EV is charged at the charging station. For 
the second situation, during an off-peak period, the battery is 
charged up to an optimal SOC value. Apart from the above, the 
events of no PV generation, no EV charging, and multiple EV 
charging are also included during the design process. Further, to 
control the operation of the converters and to direct the power 
flow between PV, EV, battery, and the utility, an intelligent 
energy management system (EMS) is proposed as shown in 
Fig. 1. The proposed EMS should be capable of predicting 
the availability of PV power based on the meteorological data 
and also estimates the EV charging demand considering the 
previous charging patterns at a given station. These estimated 
PV power and EV charging measurements are further used in 
estimating the optimal SOC for charging the battery unit during 
off-peak periods.

B. PV Power Forecasting

The solar power forecasting data is required for resourceful 
management of the PV generation while operated with the grid 
connected PV powered EVCS. Multiple complex forecasting 
algorithms have been proposed for the irradiance estimating 
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Fig. 1.  Grid connected architecture of the PV powered EVCS with battery unit.
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and electrical grid management [24]–[27]. The PV generation 
can be estimated by adding up the solar insolation (actual) 
over a time step and multiplying it with the area of the panel 
along with PV conversion efficiency. The mathematical 
representation is as follow:

EP
PV = Aη ∫ (1 - c) G (d, t)dt                     (1)

where, the daily solar PV generation is represented by EP
PV (Wh/

m2), the panel area is denoted by A (m2), the panel conversion 
efficiency is denoted by η, the cloud cover is represented by 
c and the solar insolation over the clear day is represented by 
G(d, t) (W/m2). The 2-D array is represented by G(d, t) which 
is indexed by day of the year and time of the day.

C. EV Charging Demand Estimation

The load estimation of EV charging is required to maximize 
the utilization of solar PV, SOC optimization for energy 
storage, limiting the power spikes caused by EV charging 
during the peak operation hours of the utility, and enhancing 
the economics and efficiency of the charging station. Various 
algorithms have been discussed [27]–[29] for forecasting of 
electric load/demand by exploiting statistical data on load, 
weather and multiple factor impacting electrical utility 
industry. The inconsistency in demand is depended on the 
weather, mostly ambient temperature. Whereas the traditional 
EV forecasting methods which focuses on the charging habits 
and driving pattern many are not suitable for prediction of EV 
changing load requirement. As a result, for forecasting the 
accumulated EV charging and electrical demand on a certain 
day, a historical data of the charger in use is exploited.

EP
EV = at + b                                     (2)

where, the projected EV charging for a time (t) is denoted by 
EP

EV (Wh/m2), the slope and the intercept for the fitted model 
(t = 0) are represented by a and b, respectively. The historical 
charging data is used to determine the best fit of a and b at each 
time instance. 

The estimation of battery SOC also plays an important role 
along with statistical load and meteorological data. Assuming 
that most of the charging take place in the early morning when 
the output of PV is minimal, during that instance the battery 
should be able to meet the demand predicted by the EVCS. 
The target SOC of the battery at the start of the day can be 
mathematically represented as:  

SOC SOC
k E
E

P
P

= +mean
ESS

ESS

∆
                   (3)

where, the projected SOC at the start of the day is represented 

as  with 

maximum state of charge (%), the minimum state of charge 

(%) and mean state of charge (%) represented as SOCmax, 
SOCmin and SOCmean, respectively. Considering that the charging 
takes place in the morning, the correction factor k accounts for 
the losses in the battery and other electronic components (k > 
1). Further, ∆E E EP P P

ESS EV PV= −  is the estimated energy deficit, 
where EESS(kWh) corresponds to the total capacity of the 
battery unit.

III. Energy Management System

The EMS aims at minimizing the peak load demand on 
the grid and maximize the PV generation for EV charging. 
The control strategy is implemented through MDP [30] for 
identifying the operation of the system and projecting the 
future requirements of the charging station, and battery. The 
MDP is a framework for modelling a sequence of decisions 
based on the state of a variable or group of variables. The state 
denoted S, evolves stochastically over time. At each time-step 
t an action a is selected, resulting in a reward being given, its 
value depending on the current state and the chosen action. 
These actions also have an impact on how the state evolves. 
The Markov Assumption is used, meaning that the state at the 
next time-step depends only on the state and action taken at the 
current time-step. The transition model denoted T, is the name 
given to the probability model that describes how the state 
changes over time. It specifies the conditional probability of 
moving into a state at the next time step, given the current state 
and the action taken. The formula below shows the transition 
probability for any pair of state values si and sj:

T s s a s s aj i
t

j
t

i
t( | , ) Pr( | , )= = = =+ 1 A      (4)

It is to be noted that the St denotes the state at time t while 
lower case si denotes one of the possible values the state can 
take. Further, A denotes the action. The state variable can be 
continuous or discrete. In the latter case, the transition model 
is often summarised in matrix form, with the probability of 
moving from si to sj appearing in the ith row, jth column. The 
horizon h of an MDP defines how many time-steps the decision 
sequence contains. It can have a finite value or the MDP can be 
“infinite-horizon”. The infinite horizon is frequently used as it 
means that the transition and reward models can be considered 
stationary and so do not change over time. This research only 
considered the infinite-horizon case, so little more will be 
said regarding finite-horizon cases. The reward model R(s, a) 
defines what reward is given for taking an action when the state 
is a certain value. The reward at time t is therefore a function 
of the state and action at time t. The reward for a decision 
sequence r0:h is simply the sum of the rewards rt at each time-
step up till the horizon. For infinite-horizon MDPs, where there 
is an infinite number of decisions in the sequence, a discount 
factor γ is introduced to make the accumulated reward finite, as 
shown below:

r rt tt

h
0 0:∞ =

=∞
= ∑ γ                             (5)
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Here, the value of discount factor ranges between 0-1 and 
indicates how important future rewards are with respect to the 
current state.

The aim of such an MDP is to determine a strategy to get 
the largest reward over the whole sequence. The concept of 
strategy is formalised as a policy. A policy πt(s) selects an 
action to take at time t based only on the current state s, based 
on Markov Assumption. For an infinite horizon, the transition 
and reward models are stationary (not a function of time) so 
the policies considered will also be stationary: the policy π(s)  
will be the same for all time-steps. Another important concept 
in MDPs is the value function. The value function is defined 
as the expected utility U of executing the policy p when the 
state is s. For an infinite horizon, the value Uπ(s) of executing 
the policy π given the current state s is calculated using the 
following formula:

U s R s s r s T s s s U sπ ππ π( ) ( , ( )) ' ( ' | , ( )) ( ')= + ∑        (6)

where R(s,π(s)) is the immediate reward gained by taking the 
action π(s) (the action recommended by the policy p given 

the current state s). s T s s s U s' ( ' | , ( )) ( ')π π∑  is the expected 
reward to be gained at the next time step by executing the 
policy, where s' is the next state. The expectation is taken with 
respect to transition probabilities given the current state. 

The term utility is used here (and not reward) as the future 
rewards are scaled by the discount factor, meaning that the 
rewards are regarded with decreasing importance the further 
into the future t4hey are obtained. The aim of an MDP is to 
find an optimal policy π*, ie. a policy that maximises the value 
function:

π* = argπ max Uπ(s)                              (7)

The optimal policy is usually obtained using dynamic 
programming. One of the most common algorithms used is 
value iteration. The value iteration aims to find the optimal 
value function and then extract the respective optimal policy 
after. The optimal value function U* satisfies the Bellman 
equation:

U s R s a s T s s a U s
a

*( ) max( ( , ) ' ( ' | , ) \ *( '))= + ∑γ       (8)

Algorithm 1: Control algorithm for Grid-tied and standalone operation with the PV power EVCS

Step1
 Identify the operating mode of the DG system and the charging station 

Grid Connected Operation Standalone Operation 

Step 2 < 0 > 0 < 0 > 0 

Step 3
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then 

else charge the battery from the grid: 

if 
then the PV system operates in a grid feeding mode: 

else PV system charges the battery and the remaining power is fed into the grid 

if 
then Battery charges the EVs, and the deficiency is provided by the grid: 

else Grid power charges the EVs 

if 
then PV, Battery, and grid charges the EVs 

else PV and grid charge the EVs: 

if 
then PV system charges the EVs and the remaining power is fed into the grid: 

else PV charges the EVs and the battery: 
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Value iteration starts with an estimate of U* then updates 
this estimation iteratively through the equation above, until 
convergence is reached. As a part of the proposed intelligent 
controller, the MDP achieves power management and 
transition between the operations in grid connected (nominal 
state) and standalone (below nominal state) modes on basis 
of state of charging station, grid, battery SOC and availability 
of the PV power at discrete time intervals [31]. Based on the 
operating state of the PV powered EVCS in the grid connected 
environment, two different control modes are developed as 
shown in the Algorithm 1. In the grid connected operation, the 
EV can be charged from any of the available sources [32], and 
for the standalone operation, the EV can be charged either with 
the available PV power or from the battery unit. 

Further, considering the boundary constraints caused by the 
stochastic behavior of the EVs, their effect on the optimization 
model can be minimized with the MDP process. The constraints 
mainly include initial SOC of EVs, estimated SOC, charging 
plugin time, charging plug out time, and the charging point 
selected. Hence to achieve intelligent energy management 
approach the optimization model developed Algorithm 1 must 
be solved by estimating the boundary conditions. Further, 
the boundary conditions change with the time period as they 
are affected by the current environment conditions. This will 
vary the behavior of EV user resulting in the need for updated 
predictions at each time step. Hence, the boundary conditions 
are formulated as a time series representation (q0, q1, ..., qT), 
and characterized as temporal relation using 5-tuples {S, A, R, 
π, J} of MDP with S = (s1, ..., st, ..., sT) as the state space which 
describes the environment, A = (a1, ..., at, ..., aT) as the action 
space which describes the agents decision to the environment, 
R = (r1, ..., rt, ..., rT) is the reward associated to the state action 
pair, π = (π1, ..., πt, ..., πT) represents the policy that maps the 
state action pairs, and the J = (J1, ..., Jt, ..., JT) is the return 
which is to be maximized with the optimal policy. These 
variables are defined as:

st = S = (Wv, Гv, Tv
in, Tv

out, Dv, d), v = 1, ..., t,           (9)

where Wv corresponds to the weather information including 
humidity, temperature, cloudiness, and air quality index during 
past period v, Гv represents the traffic information effecting 
the boundary conditions of past time (Tin/Tout) and initial SOC 
(SOCini), Dv is the charging station load level at ith charging 
point, and vector d = (season, month, holiday) is an integer set 
representing days in an year.

at ∈ A = {qf
t + 1, ..., q

f
δ, ..., q

f
T}                    (10)

where qf
δ corresponds to the boundary condition prediction at 

time period δ = {t + 1, ..., T}.

π(at|st) = P(at|st)|:S × A → [0, 1]                  (11)

where P(at|st) corresponds to conditional probability under the 
state and action spaces.

IV. Results and Discussion

A. Simulation

The simulation analysis demonstrates the operation of the 
developed EMS with the grid connected PV based EVCS. 
The available PV power generation and the EV charging 
demand of a charging station for 4 days is shown in Fig. 2. The 
parameters of the simulated system are shown in Table I, and 
the hyperparameters for learning with the stochastic approach 
are shown in Table II. The hyperparameters for training the 
environment are empirically optimized such that there exists 
a direct mapping between the agent and the observations to 
the control. The operational window of battery SOC is limited 
between 0.4-1.0. As most of the EVs have an onboard charger 
of capacity 6.6 kW or a 3.3/3.6 kW, the time taken by the EV to 
charge its battery from 0.5 SOC is assumed to be 2-2.5 hours 
for a 6.6 kW charger and 4 hours for 3.3 kW charger for the 
simulation analysis. Further, the developed EMS implements 
two approaches with the grid connected PV powered EVCS, 
one for immediately charging the battery to a prescribed 
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Fig. 2.  Input data (a) Available PV power generation. (b) EV charging demand.

TABLE I 
Parameters of the Grid Connected PV Powered EVCS

Parameter

250  600V
DC

/10 kW

275  400V
DC

/35 kWh

10 kW

220 V/110 V

7.2 kW

 Rating  

PV Array  

Bidirectional DC/DC and DC/AC

converter  

Vehicle charger  

Battery  

Utility grid  

TABLE II 
Hyperparameters of Markov Decision Process

Hyperparameter  Value  

Soft update coefficient 0.005 

Interpolation factor 0.9 

Learning rate 1e 4

Discount factor (ranging between 0 1) 0.99 

Replay buffer size  1000000 

Minibatch size  100

Episodes 1000

Time steps per episode 1e+6

2e+6

Reset steps per episode 100

Max time steps 
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level within 1-2 hours after each EV charging event, and the 
other approach is for charging the battery to an optimal SOC 
value during the off-peak hours from midnight to 7 am. For 
the second approach, the optimal SOC is estimated using the 
projections of PV power generation and EV load demand. 

The training of the MDP framework is done in MATLAB/
Simulink environment with the data related to an EVCS 
operating in a grid connected system. The estimated target for 
the algorithms is regulation of power flow between the PV, EV 
and the grid with reference to the load requirement and battery 
SOC. As the measured data from the system is a continuous 
data, it is accommodated with the discrete control unit by 
defining the action and observation space are defined as a tuple 
of discrete values. This introduces a structure in to the action 
space and the agent decides which action to take to perform the 
actor representation with input observations and output actions. 
The measured error is reliant on estimated characteristics and 
setpoint characteristics which keeps updating as per the reward 
generation. Later, the actions are evaluated and higher action 
values will be actually executed to perform optimal control 
action and conduct policy search. The objective of algorithm 
is to regulate the impact of peak loading on the grid. The 
algorithm learns each task for 1e+6 time steps and provides the 
average return for each time step.

B. Simulation Results

To begin with, the aspects of PV powered EVCS without 
the battery system are simulated, and the corresponding grid 
power and cumulative electricity are plotted as shown in Fig. 3. 
The circled areas in the grid power chart represent the off-peak 
periods.

The results in Fig. 3 showed the grid power (Fig. 3(a)) 
and cumulative electricity (Fig. 3(b)) for the PV powered 
EVCS without battery unit. The positive amplitude in the 
Fig. 3(a) indicates the energy consumption from the grid and 
negative dip indicates the energy fed into the grid. Similarly, 
the blue curve in Fig. 3(b) indicates the cumulative electricity 
consumption from the grid (EW Utility), and the red curve 
indicates the cumulative electricity fed into the grid (EF Utility). 

Further, to analyze the system behavior for the approaches 
implemented by the EMS, the grid power, and the cumulative 
electricity exchange between the utility grid and the charging 
system are plotted as shown in Fig. 4. 

From the results in Fig. 4, it is identified that, after each 
EV charging event, the battery unit is charged up to the SOC 
of 1. It also indicates the impact of the EMS approach, as the 
charging occurs during the on-peak, and partial-peak periods. 

By comparing the outcomes of PV powered EVCS with fixed 
battery unit with the outcomes of PV powered EVCS without 
battery unit, it can be observed that the power demand spikes 
on the utility were only slightly reduced. Besides, the energy 
exchange between the utility and the charging system were 
also reduced by a factor of 2.

Furthermore, the action of developed EMS while implemen-
ting the approach related to optimal soc for a grid connected 
PV powered EVCS is shown in Fig. 5. In this condition, the 
actual battery SOC is compared with the target SOC of the 
battery to understand the charging needs for the battery during 
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Fig. 4.  Grid connected PV powered EVCS with fixed buffer battery SOC (a) 
Grid power. (b) Available PV power generation. (c) Battery SOC. (d) Battery 
power. (e) Cumulative electricity between the utility and the charging system.

Fig. 5.  Grid connected PV powered EVCS with battery unit and intelligent 
EMS (a) Grid power. (b) Available PV power generation. (c) Battery SOC. (d) 
Battery power. (e) Cumulative electricity between the utility and the charging 
system.
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the off-peak periods. Compared to Fig. 3, the power demand 
for battery charging was shifted away from the on-peak to the 
off-peak time period, and the power demand peak was reduced 
by a factor of 2. This approach resulted in a better energy 
management.

C. Experiment

The real-time experimental setup for a grid connected PV 
powered EVCS with a battery storage and the bi-directional 
inverter is developed as shown in Fig. 6. The PV simulator 
realizes the operation of the 5 kW PV array operating under 
six different mission profiles. The output of the PV simulator 
is provided as input at the DC link terminal of the inverter and 
simultaneously fed into the typhoon HIL through the analogue 
inputs. These analogue inputs identify the measured DC link 
voltage variations. 

Further, the grid characteristics, EV charging characteristics 
and Battery operation are simulated in the typhoon HIL and 
integrated with the measurement from the PV simulator 
and in the inverter terminal voltage. Here the typhoon HIL 
402 setup provides an interconnection between the PV 
simulator, and Semikron inverter in the hardware, and the 
bidirectional converter developed in the simulation. The 
interconnection diagram for the hardware and simulation 
interface through the typhoon HIL are shown in Fig. 7. The 
details of battery development and charger development used 
in the experimental analysis are provided in [33], [34]. This 
integration setup is used to generate the data for developing the 
power management control through Model-sim and Quartus 
programming. The Model-sim platform replicates the driving 
cycles and charging discharging pattern of the EV through and 
Quartus programming software is used to achieve the control 
strategy which is implemented in typhoon HIL simulation 
through Python programming language. 

The controller manages the power flow between the different 
components and optimizes the battery storage according to 
the estimated PV electricity and the projected EV load. The 
test operation of the system demonstrated that the controller 
can successfully extract weather information, estimate PV 
electricity, project EV charging load, and optimize the battery 

target SOC between 0.3-1. For a low SOC, the battery unit 
is recharged during off peak hours, and the charging station 
is operated without the intelligent controller. The measured 
PV power for different mission profiles and the adapted EV 
charging load are shown in Fig. 8. 

D. Experiment Results

The operation of charging station with and without the 
battery unit and its impact on grid power utilization with the 
system is shown in Fig. 9. From the results it is observed that 
the charging station with battery unit has a significant reduction 
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in peak power demand when compared with the charging 
station without battery unit. Further, the charge, discharge 
pattern of the battery with respect to the battery power and 
SOC, and the cumulative electricity for charging station with 
and without battery unit are shown in Fig. 10. The curves in red 
indicate the energy withdrawn and energy fed into the grid with 
the charging station without buffer battery system. Further, 
the curves in blue indicate the energy withdrawn and energy 
fed into the grid with the charging station with fixed buffer 
battery SOC. Similarly, the curves in green indicate the energy 
withdrawn and energy fed into the grid with the charging 
station with optimized buffer battery SOC. Comparing the 
energy exchange in both the charging scenarios with the grid, 
the charging station with battery unit has a reduced energy 
exchange factor of 2.

The scenarios in Fig. 10(a-c) correspond to operation of 
PV based EV charging without a buffer battery, PV based EV 
charging with fixed buffer battery SOC, and PV based EV 
charging with optimized buffer battery SOC respectively. The 
total energy withdrawn from the grid for the complete period 
during scenario (a) is 38 kWh, scenario (b) is 24 kWh, and 
scenario (c) is 18 kWh. Similarly, the total energy fed into the 
grid during the complete period in scenario (a) is 52 kWh, 
scenario (b) is 33 kWh, and scenario (c) is 27 kWh. Further, 
the energy shift from on- to off-peak hours from scenario (b) to 
scenario (c) is optimised by a factor of 0.8 and the stations peak 
power demand and energy exchange with the grid is lowered 
by a factor of 1.5 reducing the burden on the grid. 

Further, the data is collected to achieve EV charging load 
projection, by operating the charging station continuously 
without optimizing the battery unit. Once the data is collected, 
the system is operated with the intelligent energy management 
system. In addition, the estimated PV generation calculated 
from the simulated models and actual the actual PV generation 
measured from the PV simulator output are shown in Fig. 11 
(a). It is observed that, the estimated PV generation for the data 
sheet information is higher by 14% -17% than the actual PV 

generation data. This is mainly due to effect of varying mission 
profile.

Similarly, the estimated PV and EV charging load are shown 
in Fig. 11(b). From both the estimated EV and PV scenarios, 
the battery SOC target is optimized and charges during the off-
peak hours for SOC less than the target SOC. The project EV 
load, estimated PV generation and optimized SOC are shown 
in Fig. 11(b) and (c). The results of the developed optimization 
approach with the charging strategies available in the literature 
are compared in Table III.

From the result it is identified that the intelligent controller 
along with optimized battery soc target can almost eliminate 
the peak power demand of the charging station on the utility 
grid.

V. Conclusion

An intelligent energy management system for optimal 
operation of grid connected solar powered electric vehicle 
charging station is developed. The controller is developed by 
adapting Markov decision process with the mission profile data 
of PV availability, grid loading, and the EV charging load data 
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TABLE III
Comparison Between Conventional and Proposed EVCS Technologies

Parameter  
Traditional 

charging 

strategies  
[4][8] 

Without 

buffer 

battery  

With fixed 

buffer 

battery  SOC  
[12], [13], 
[17]–[19] 

Proposed 

optimization 

method  

Grid Impact  High High Medium Low 

Energy 

management 

strategy  

No  No Yes Yes 

PV and Load 

estimation  
No No No Yes 

Cost  Low Medium 

High 

(battery 

cost) 

High 

(battery

cost)
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and achieved optimal operation by controlling the power flow 
between the photovoltaic (PV) system, energy storage unit, 
EVCS and the grid. The introduction of varying irradiance 
data and EV load profile eliminated the conventional problem 
of immediate recharging of energy storage unit after each 
EV charging by setting a target SOC level. This maximized 
the utilization of PV power for charging of EV charging and 
minimized the impact of energy exchange on the grid. Further, 
numerical simulations and experiments were carried out 
and the operation of the proposed controller is tested. Three 
different experiment scenarios are carried out as follows: 
charging station without energy storage unit, charging station 
with energy storage unit, and charging station with energy 
storage unit controlled by intelligent controller for varying 
irradiance profile and load profile for multiple days. The results 
showed an estimation of EV load and PV power and optimized 
the energy storage unit SOC between 0.3-1. These projections 
and optimizations minimized the impact of energy exchange 
between the grid and charging station by a factor of 2.

This work can be further extended by considering the 
preferred charging rate of the EV, and time of stay at charging 
station, along with the EV battery soc while designing the 
controller. Besides, the ancillary services of EVs like vehicle 
to grid can also considered while designing the developed 
approach. 
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