

Electrification of Ship Based on Power Electronics

Nov. 6th, 2022 09:20 - 11:00 **2022 Global Power Electronics Summit-2**


Prof. Seung-Ki Sul IEEE Fellow

SNU Power Electronics Center Seoul National Univ. Seoul Korea

The 3rd IEEE International Power Electronics and Application Conference

作者 Introduction **Electric Propulsion Ship**

History of worldwide marine electric propulsion

USS New Mexico, 1917

https://en.wikipedia.org/wiki/Turbo-electric_transmission

History of worldwide marine electric propulsion

- ► Late 19th century
 - Electric propulsion ship powered by battery in Russia, Germany, etc.
- ▶1910's
 - Turbo-electric transmission used for transatlantic ocean linear.
 - ✓ Diesel engine became prevalent by its technological advancement.
- ▶1970's
 - Introduction of modern motor control
 - SCR-based AC/DC rectifier for electric propulsion ship

History of worldwide marine electric propulsion

▶1980's

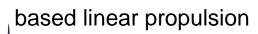
Advancement of power electronics and motor design

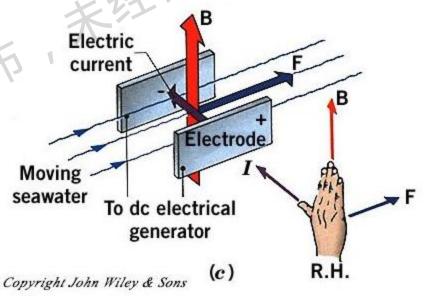
AC/AC convertor for electric propulsion ship

▶1990's

- Veed of fuel economy, maneuverability, survivability, quietness
- Podded propulsion for icebreaker, cruise ship, etc.

►2000's

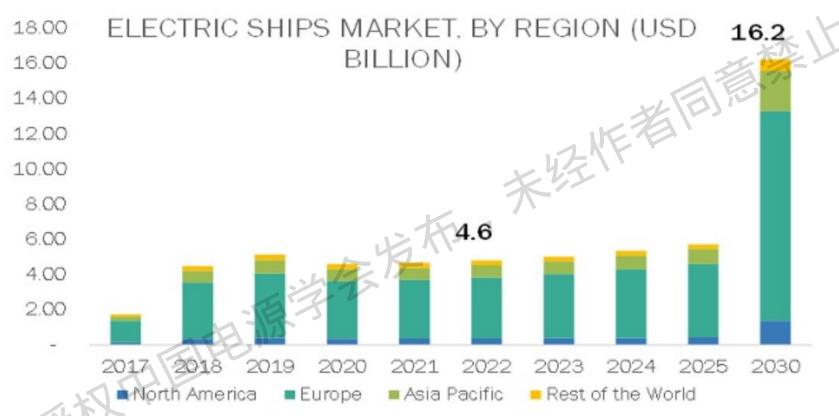

- ✓ 30~40% reduction of annual fuel consumption
 - Field support vessel, offshore construction vessel
- Royal Navy constructs every warship as electric propulsion.
 - Since early 2000's



Present and future of worldwide marine electric propulsion

►2010's

- ✓ DC gird
 - Optimal operation of Gen-set
 - · Higher efficiency thanks to reduced power conversion
- More electrification
 - Hydraulic, pneumatic \rightarrow Electric
- ►2020's ~
 - Green hydrogen
 - Hydrogen fired engine
 - Fuel cell
 - Propeller-less propulsion
 - Superconductive magnet

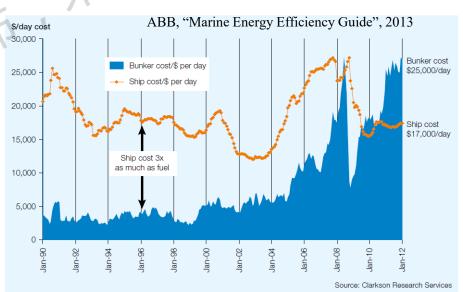


Magneto Hydro Dynamics

Market volume forecast

https://www.marketsandmarkets.com/Market-Reports/electric-ships-market-167955093.html?gclid=CjwKCAjw_JuGBhBkEiwA1xmbRfzVE8m8tgGOWwE-9BwU33iYFxrAYSLcWEdW7ggJIBLiKV4ngpnn2hoC_bsQAvD_BwE

Total cost for ownership

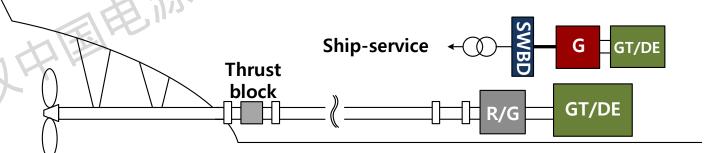

- ► Before 2000': Ship cost > 3 times of fuel cost
- ► After 2010: Ship cost < fuel cost
- ► 2020's: Mandatory use of ULSFO, MGO → 50 % more fuel cost

Cost for 1 kWh by fuel cost only * ULSFO : Ultra Low Sulphur Fuel Oil, MGO : Marine Gas Oil

▶ 1990's: 2 cent/kWh, 2017: 9 cent/kWh, 2020's: 13 cent/kWh

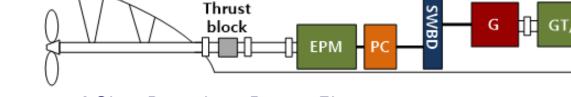
IMO regulation

- ► CO² emission from marine industry :
 - ✓ 3.3 % @ 2007 → 12~18 % @2050
- Target of GHG emission reduction compared to 2008
 - ✓ ~2014: 5%,
 - ✓ ~2019:10%,
 - ~2024: 20%
 - ✓ ~2030: 40%


The 3rd IEEE International Power Electronics and Application Conference

Comparison **Electric Propulsion Ship** vs Mechanical Propulsion Ship

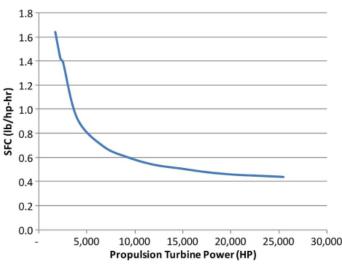
Structural comparison


- ► Conventional Mechanical Propulsion
 - Propulsion System
 - Controlled Pitch Propeller + Long Shaft + Reduction Gear + Engine/Turbine
 - Regular maintenance, noise and vibration
 - Slow dynamics
 - Poor maneuverability
 - ✓ Generation System
 - Separate gensets
 - Additional redundancy

Structural comparison

- ► Electric Propulsion
 - Integrated Power System (IPS)
 - Gensets for both propulsion and electricity
 - » Reduced redundancy
 - » Increased load factor \rightarrow Higher fuel efficiency
 - Simple Fixed Pitch Propeller + Shaft + Motor + Inverter to SWBD
 - » Wide speed-torque range \rightarrow reverse thrust, regeneration
 - » Free from regular maintenance, reduced noise & vibration
 - » Fast dynamics
 - Higher initial cost
 - Training about new system for maintenance

Ship-service + ()

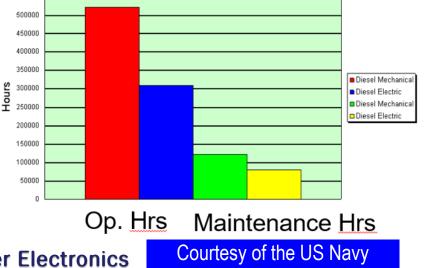


Problem of the mechanical propulsion

- ► Poor load factor
 - ✓ For maximum ship speed; 21 kts → Rated power; 18 MW
 - \checkmark For cursing speed; 15 kts \rightarrow Less than half power; 6 MW
 - 80% of operation time < 15kts; 33% load factor
 - 55% of operation time < 12kts; 20% load factor

Reduced fuel economy, Increasing malfunctioning & maintenance

"Hybrid Electric Drive for Naval Combatants," D. Alexander, *Proceeding* of the IEEE, vol. 103, No. 12, Dec. 2015.


Advantages of electric propulsion

- ► Reduced maintenance, crew, operation cost
 - Vumerous combination of generators \rightarrow Enhancing load factor of engine

550000

- Less required component
 - No need of gearbox, clutch, CPP
- Reliability, flexibility and capability
- Supporting ever increasing electric loads
 - Accommodating future electric(pulse) loads
 - N-1 contingency (fail safe)
- Highly improved maneuverability
 - Dynamic positioning
 - Small turning angle
 - Much reduced crash stop distance
 - 15 ship lengths \rightarrow 3~4 ship lengths

The 3rd IEEE International Power Electronics and Application Conference

作者 Case Study I Shaft Generator

Case Study I : Shaft Generator

Shaft generator

- ► Increasing load factor of main engine
 - Saving fuels

Shaft Generator

► Electric propulsion at low speed

[Ref] https://www.wartsila.com/marine/products/ship-electrification-solutions/shaft-generato

Frequency Converter

Case Study I : Shaft Generator

Shaft generator

- ► Power Take Out(PTO)
 - The electric machine on the shaft is working as a generator taking torque of main propulsion engine/gas turbine. And, by increasing load factor of main propulsion engine/gas turbine and reduced operation of generator engine, the fuel economy can be enhanced.

► Power Take In(PTI)

- The electric machine on the shaft is working as a motor for torque boosting for the main propulsion engine/gas turbine.
- ► Power Take Home(PTH)
 - ✓ The electric machine on the shaft is working alone as a motor for the propulsion of the ship. → Electric propulsion

► STACOM operation

 Frequency converter can be used as STACOM for reactive power compensation to improve efficiency of ship generator.

[Ref] https://www.wartsila.com/marine/products/ship-electrification-solutions/shaft-generato

The 3rd IEEE International Power Electronics and Application Conference

Case Study I DC Grid Electric Ship

Case Study II : DC Grid Ship

Whale watcher

- ► Ship for sightseeing: whale watcher at east sea of Korea
- ►L: 90 m, H:5.4 m, W:12.8 m
- ► 2800 ton, 300 passengers
- ► Electric propulsion

► DC Grid \rightarrow Variable engine speed

Case Study II : DC Grid Ship

Whale watcher

- ► Basic specification
 - ✓16 kts
 - ✓ 3.6 MW generation capacity
 - Two wound rotor synchronous generators(WRSG)
 - 1 MWh Li-ion Battery
 - 30 min battery operation
 - 1100 V DC link voltage
 - 2.6 MW propulsion
 - Two induction motors
- Key power electronics technologies
 - Active Front End(AFE)
 - PWM boost converter between WRSG and DC grid
 - Sensorless control, no filters, variable speed operation of gensets
 - Sensorless control of propulsion motors
 - Solid state circuit breaker in DC grid

20/20

eoul national unit ower Elec Thank you SPEC

