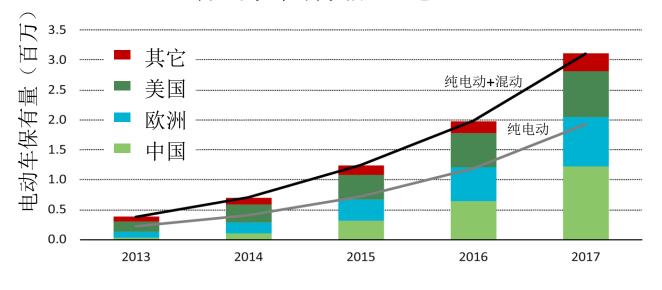
锂离子电池快速充电面临的科学与工程问题

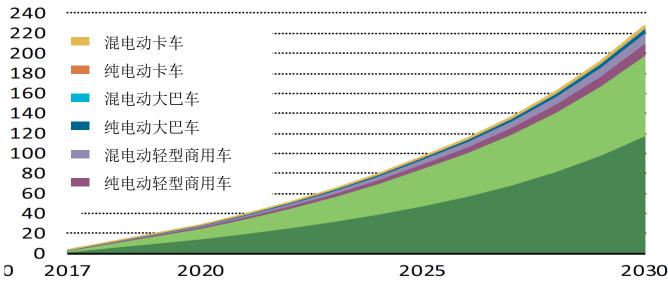
2021中国新能源车充电与驱动技术大会

2021年7月10日,上海嘉定喜来登酒店

www.hexmgroup.com

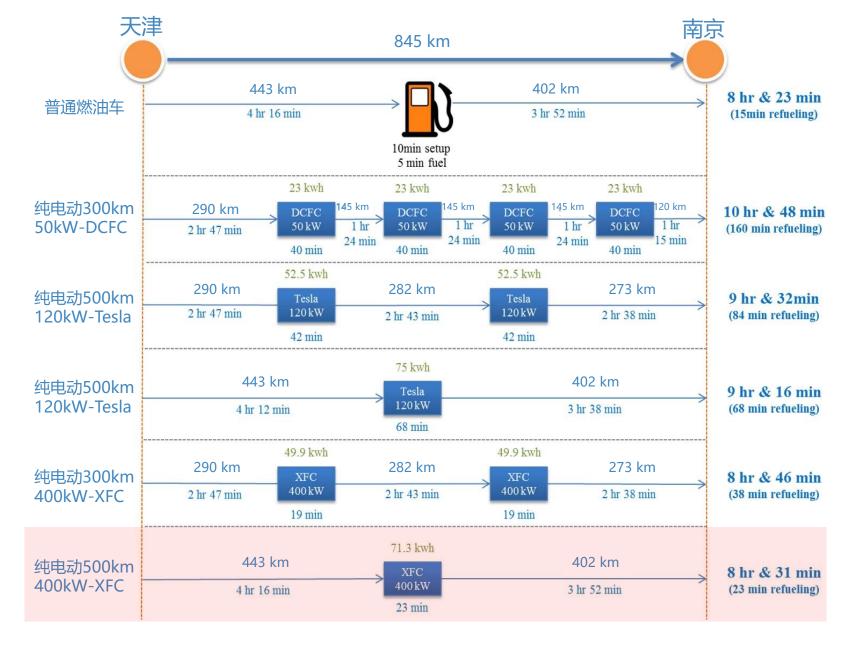
何向明 清华大学 核研院新型能源与材料化学研究室


Institute of New Energy Technology


INET, Tsinghua University

内容提要

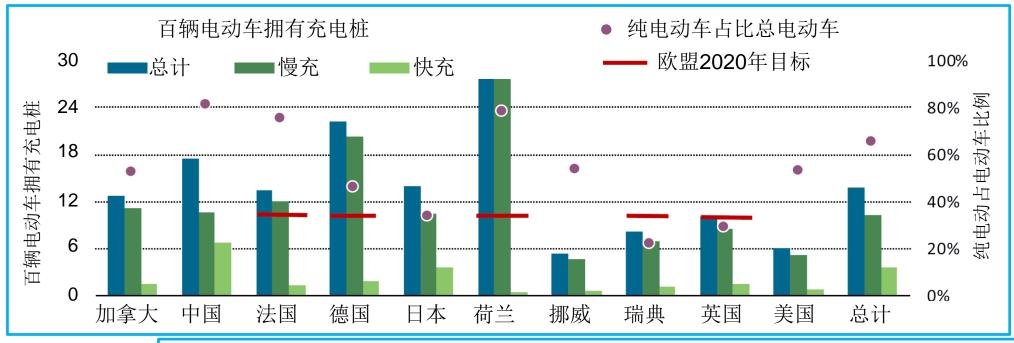
电动汽车市场发展迅速

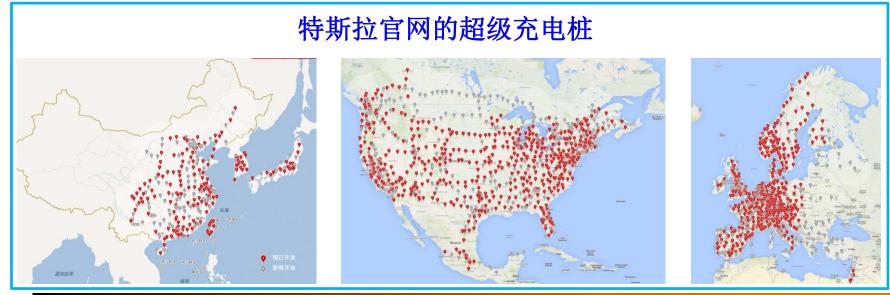


2020年全球电动汽车保有量超过650万辆 中国电动汽车保有量最大:全球总量的52%。

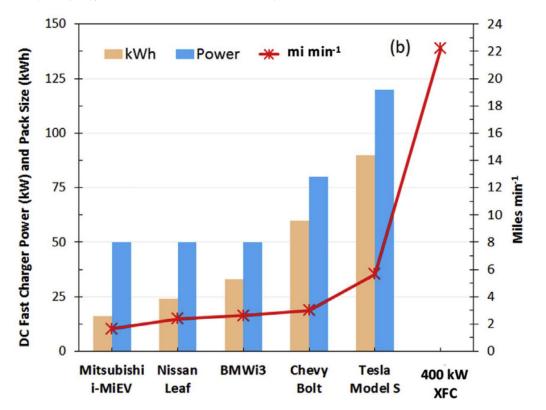
到2030年在道路上的电动乘用车的数量可以高达2亿2千万: 1亿3千万纯电池电动车和9千万个插电混合动力车

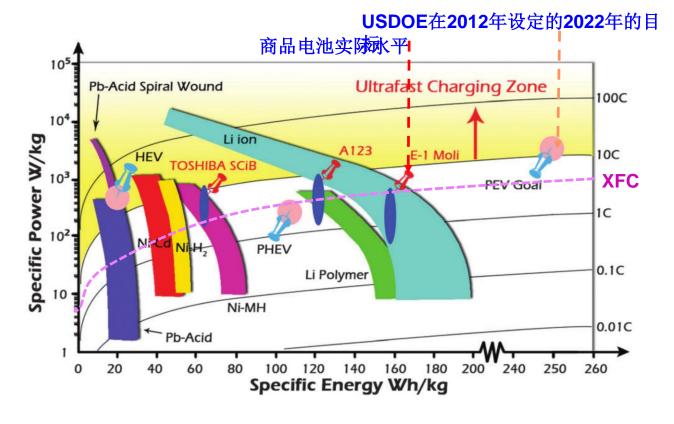
电动汽车的里程焦虑


- ▶ 目前的充电速度使得旅程时间至少增加 10%;
- XFC可满足用户体验,仅从电池考虑,要求4-6C充电倍率(电芯比能量>200 Wh/kg),这会导致无法忍受的充电升温或者超高电压
- ➤ 薄电极锂离子电池可以高速充电(>5C), 但比能量降低20%以上、成本高昂
- ▶ 超高电压对单体电池的一致性要求极高;



▶ 提高充电速度,减少充电次数——更要减少等待时间: 充电桩密度与充电速度

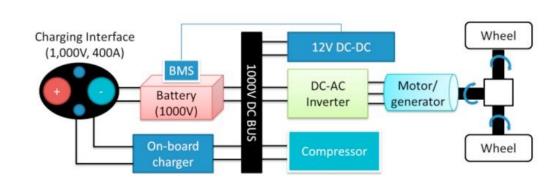

充电桩密度远低于需求

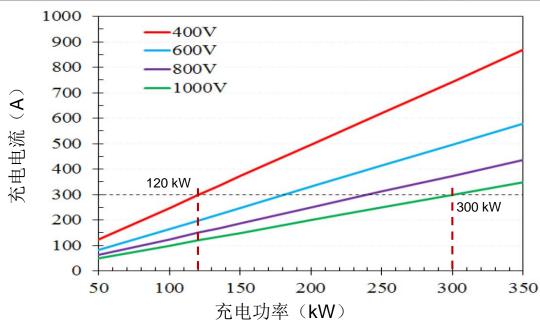


现有车辆及电池充电能力

- ◆ 产业期待的XFC仅为6C,与加油体验相当,则需要10C; 笔记本和照相机用18650电池的推荐充电时间为1.2小时;
- ◆ 特斯拉目前超级充电系统的功率为120 kW,效率为每分钟10公里
- ◆ 欧洲基于欧标体系完成了350kW大功率
- ◆ 充电标准体系建设,将有效解决充电安全、温升控制、通信协议等问题
- ◆ 日本CHAdeMo协会定义快充为120~180kW,计划到2020年提升至150~200kW,到2025年以后进一步提高到350~400kW。
- ◆ 2019年4月,电力设备供应商ABB发布了350kW的Terra高功率充电系统,称电动汽车充电8分钟可行驶200公里 (25公里/min)。
- ◆ 2018年美国充电设施运营商ChargePoint发布Express Plus快速充电系统,据称最大充电功率可达400kW,在欧洲和北美落地。
- ◆ 通用汽车正在与合作伙伴Delta Americas共同开发电动汽车快速充电系统,目标是让电动汽车充电10分钟可行驶290公里。

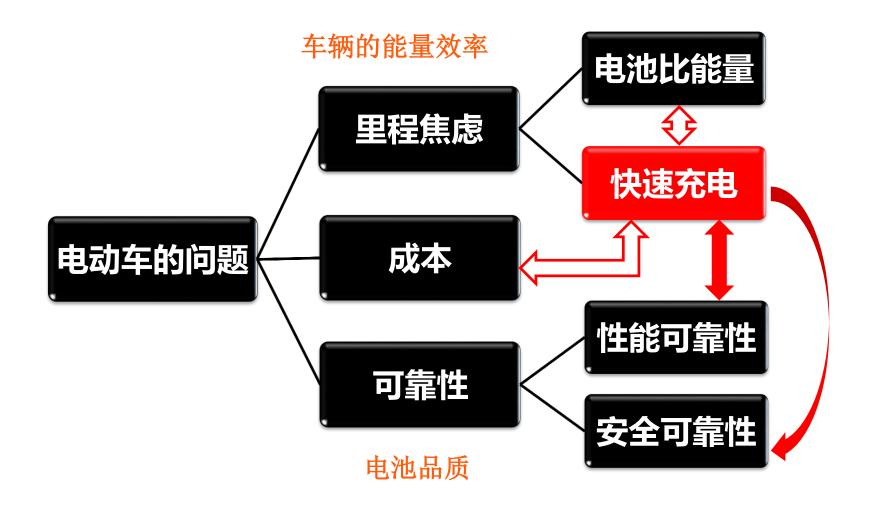
车辆能耗vs充电时间


100公里能耗 18kWh	慢速充电 (水平一) Level 1 (110V, 1.4 kW)	慢速充电 (水平二) Level 2 (220V, 7.2 kW)	直流快速充电 DC Fast charger (480V, 50 kW)	特斯拉超级充 Tesla Super Charger (480V, 140 kW)	美国能源部 XFC (800V, 400 kW)
充电5分钟行驶里 程(km)	0.6	3.0	20.8	58.3	166.7
行驶300km需要的 充电时间(分钟)	2571.4	500.0	72.0	25.7	9.0
行驶500km需要的 充电时间(分钟)	4285.7	833.3	120.0	42.9	15.0
100公里能耗 10kWh					
充电5分钟行驶里 程(km)	1.1	5.4	37.5	105.0	300.0
行驶300km需要的 充电时间(分钟)	1428.6	277.8	40.0	14.3	5.0
行驶500km需要的 充电时间 (分钟)	2381.0	463.0	66.7	23.8	8.3


▶ 降低百公里能耗,可显著降低快速充电压力:提高电机效率,车身轻量化,降低百公里能耗

快速充电技术发展趋势

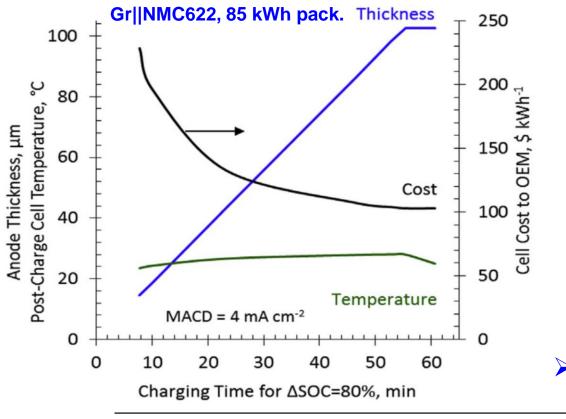
	Today			Future	
Charger Voltage	400V	400 - 1000V			
Charge Inlet	CHAdeMO, SAE J1772 CCS, Tesla	XFC Designed Inlet (s) for 1000V@400A			
400V, 125A, 50kW		600V, 400A, 240kW	800V, 400A, 320kW	1000V,400A,400kW	
Vehicle	400V, 350A, 140kW	1000V, 210-280	1000 v,400A,400K vV		
Battery	1.5 – 2C	2.0 – 3.3C	3.3 – 4.6C	4.6 – 6C	



	现有纯电动车	未来纯电动车
快速充电功率	50-120 kW	>400 kW
电池系统电压	乘用车400 V 商用车800 V	800-1000 V
电池系统容量	20-90 kWh	>60 kWh
行驶里程	120-500 km	>300 km

▶ USDOE: 1000 V系统是未来纯电动车的重要选择

- ▶ 提高系统电压对实现超级快速充电至关重要。目前电池组电压<400V, 最大充电电流达350 A。
- ▶ 大电流会产生更多的热量,增加冷却系统热负荷,更高等级的电流母线、极耳、集流体、熔断器、开关和绝缘。增加系统的重量和成本。其它配套设施设备也必须适应更高的电流。



> 快充对于电池寿命(性能可靠性)和安全可靠性的影响,是当前最迫切需要解决的问题

快充 vs 比能量/价格

No pack cooling, maximum allowable current density to avoid lithium plating (MACD) = 4mA cm⁻², anode/ cathode thickness ratio = 1.12

》现有电池技术水平,满足充电安全和寿命需求, 10min快充电池的比能量约为1小时充电电池比 能量的50%

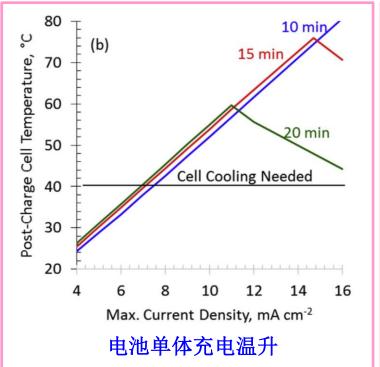
▶ 10min快充电池的价格约为1小时充电电池价格的2倍

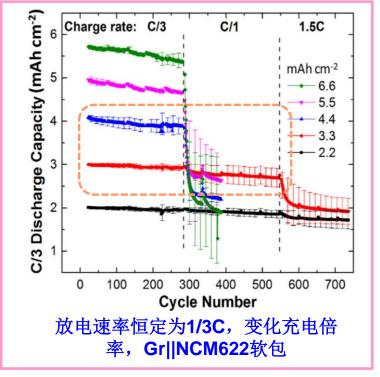
Charging Time, $\Delta SOC = 80\%$, min	8	10	23	47	53	61
Charging Time, $\Delta SOC = 60\%$, min	5	7	15	30	34	39
Charger Power Needed, kW	601	461	199	100	88	77
Anode Thickness, μm	14	19	43	87	98	103
Heat Generated during Charge,	2.35	2.20	1.89	1.77	1.75	1.45
kWh per pack						
Post-Charge Cell Temperature ($\Delta SOC = 80\%$), $^{\circ}C$	22.4	24.4	25.9	26.4	26.4	19.5
Cell Mass, kg	2.75	2.40	1.74	1.49	1.46	1.45
Cell Cost to OEM, \$ per kWh	\$229	\$196	\$132	\$107	\$104	\$103 \$0
Cost Difference, \$ per kWh	\$126	\$93	\$30	\$4	\$1	\$0

25 增加33% 10C功率型 每个电芯的发热功率 电芯 10个电芯 串联中的 增加28% 单个电芯 普通 单个 增加15% 电芯 30 60 放电电流 (安培) NCM/Graphite电芯在不同温度下的容量衰减 (世) 到达80%容量的时间 20°C 25°C 30°C 35°C

50

充放电深度(%)

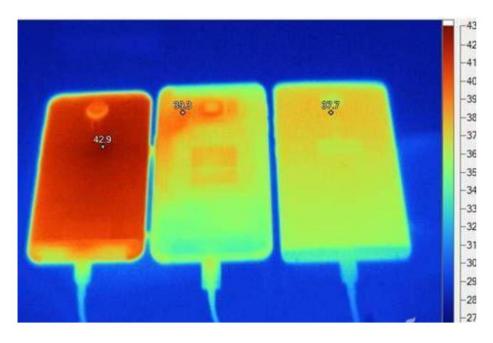

60


70

80

90

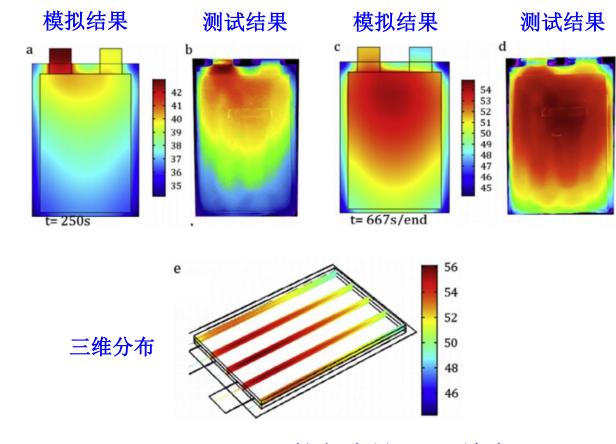
快充 vs 寿命



- 现有高功率/电流的优化设计中,连接器仍然贡献大量的热量,导致电池温升;
- 快速充放电时,电芯在电流下的发热对电池寿命的影响不能忽视
- ▶ 电池平均温度每升高13°C,寿命减半;
- ▶ 快充引起电化学失效(界面副反应),导致寿命下降。

30

20

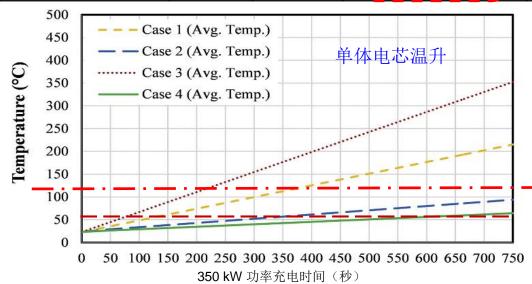

快充 vs 安全性

高压高电流(9V/2A、12V/1.5A)

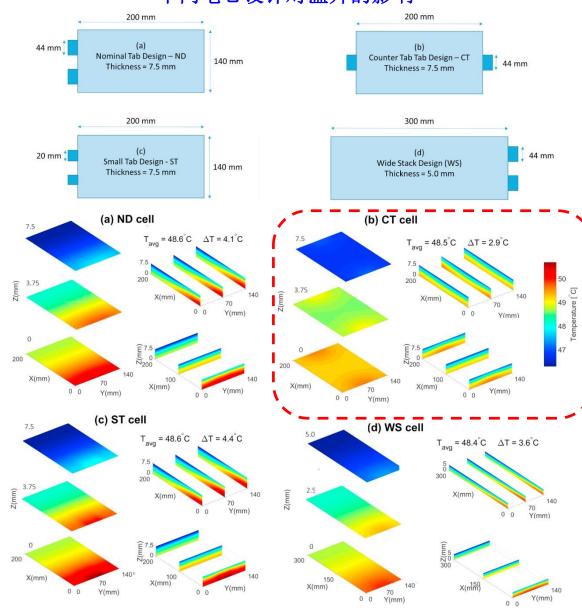
手机电池充电技术:控制产热;单电池到双电池低压高电流(5V2A)高压高电流(9V/2A、12V/1.5A)低压高电流(5V/8A)高压高电流(10V/4A)

动力电池——容量大、数量多

20Ah软包电池,5C放电


- 散热差、安全事故后果严重
- ▶ 机械失效问题更为突出
- ▶ 电池的动态一致性: 品质与电源管理

快充 vs 安全性


不同系统设计参数在超级功率充电时的温升

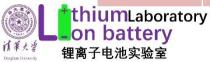
	单位	Case1	Case2	Case3	Case4
比能量	Wh/kg	175	300	300	175
电芯数	Cells	484	282	282	484
电芯热效率	%	70	90	70	90
系统冷却功率	kW	2	15	2	15
单电芯产热功率	W	239.9	138.3	411.3	80.7
单电芯冷却功率	W	4.14	53.2	7.1	31
传热系数	W/m ² /k	10	100	10	100

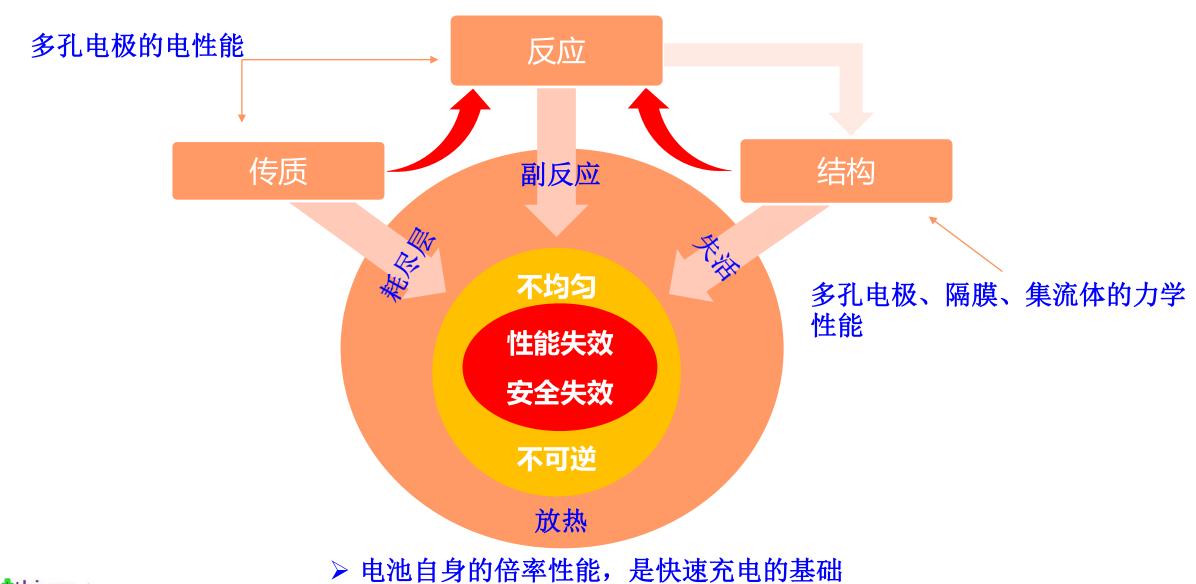
- ▶ 美国能源部设定电芯运行最高温度为52℃
- 》 能量型电芯设计需要满足快速充电要求

不同电芯设计对温升的影响

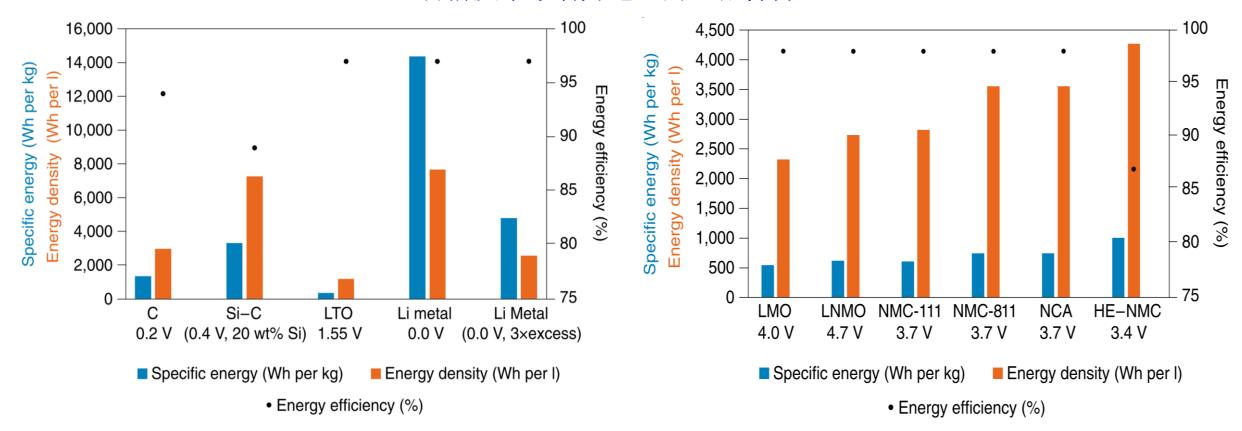
安全技术水平现状

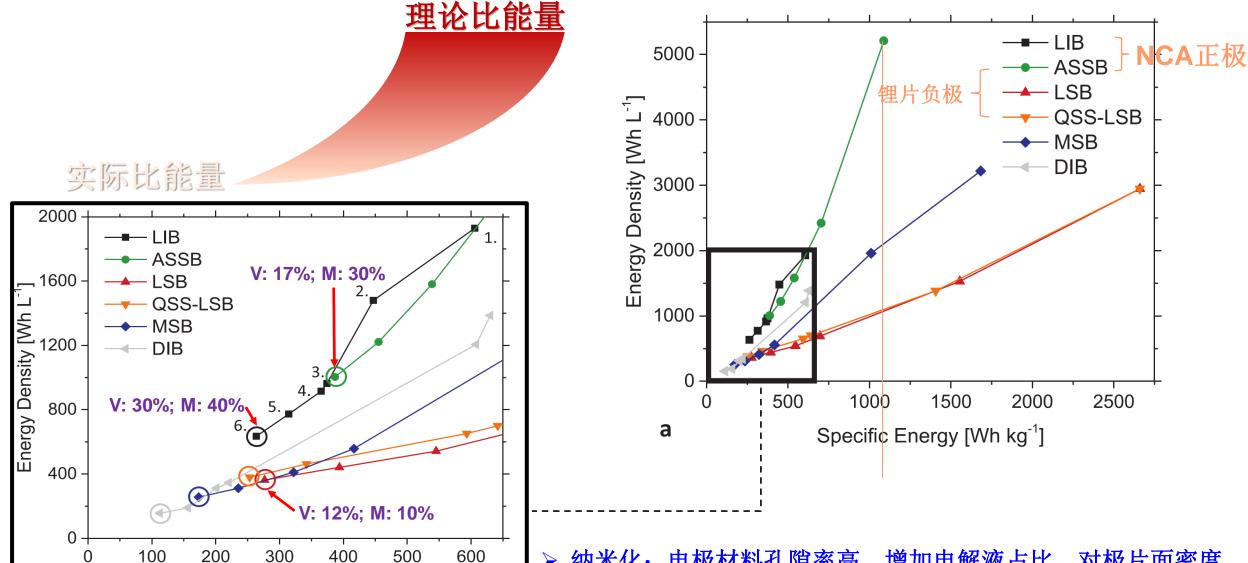
▶ 电动汽车安全事故频发: 2018年,48 起自燃;2019年,≥ 58起自燃





CCCV, CCD @ 0.5A, 2.7~4.2 V		ARC test		
正极	负极	T₁/°C	<i>T</i> ₂ /°C	<i>T</i> ₃ /°C
NMC532	graphite	147	234	645
NMC811	graphite	120	196	640
NMC532	Si-C	130	232	670
NMC811	Si-C	120	198	715


- ➤ 100颗18650电池热失控能量相当于57kg TNT
- 常规充电尚且存在诸多问题。。。
- > 高能量的锂离子电池体系,安全性问题更为突出
- ▶ 快充,令电池安全问题严峻


快充材料研发问题之一: 材料体系

目前及未来动力电池的主流材料

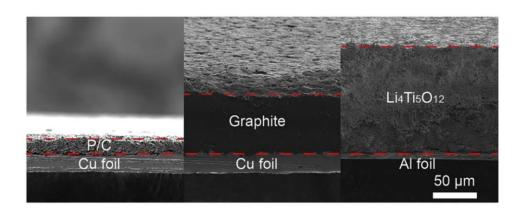
- > 电池比能量是基础
- > 快充负极材料可供选择的极少

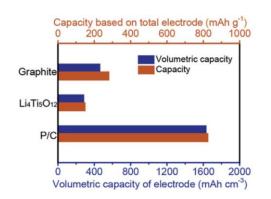
快充材料研发问题之二: 材料性能 vs 电池性能

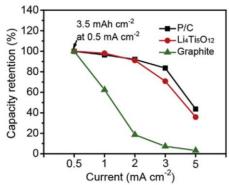
Specific Energy [Wh kg⁻¹]

b

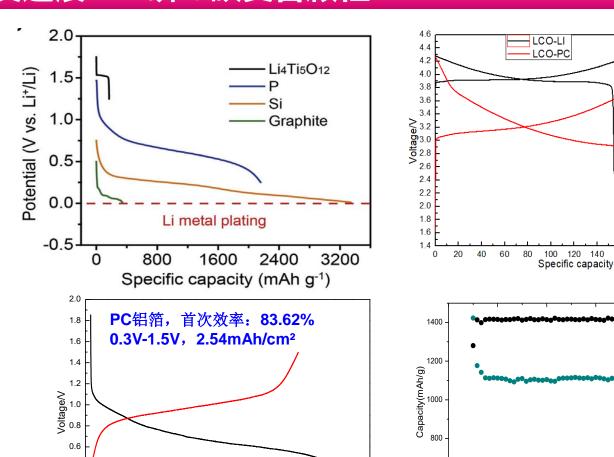
▶ 纳米化: 电极材料孔隙率高,增加电解液占比,对极片面密度的提高非常有限,可实现的比能量约为理论比能量的10%


快充材料研发进展-2:磷@碳复合颗粒


0.4


200

400


3.5 mAh/cm²

红磷负极

▶ 高比容量: 极片薄,满足传质要求

800

Specific capacity/mAh

600

▶ 粒度合理:加工工艺兼容、电极比能量高

1000

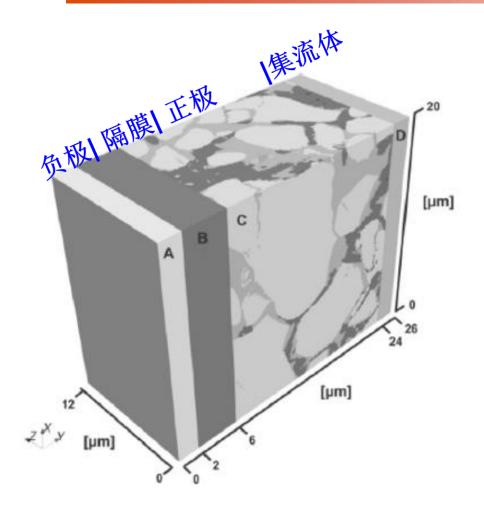
1200

▶ 高嵌锂电位:避免析锂发生,可以使用铝集流体

1400

Cycle number

80


40

20

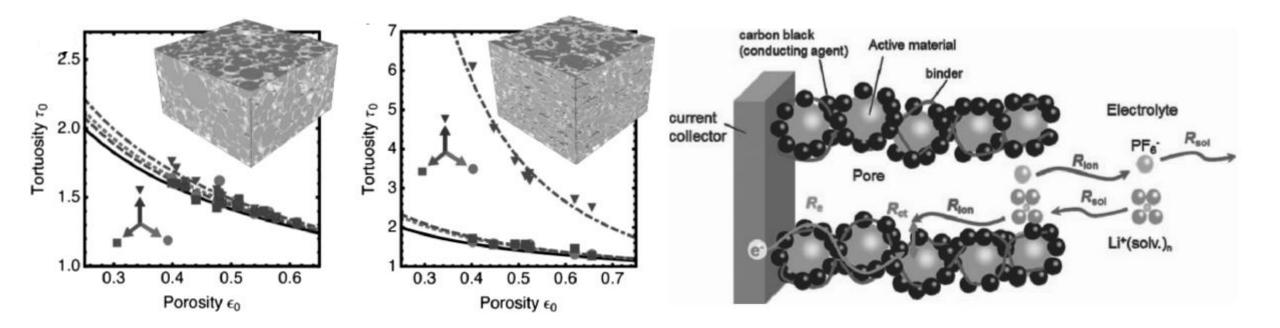
efficiency(%)

展望1

用实际电极结构进行模拟与仿真,基于材料进行电池和应用边界设计

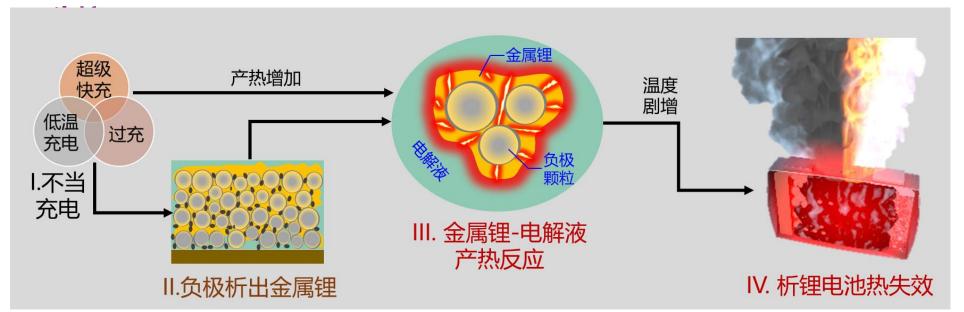
基于真实电极的微观结构,应用电化学模型模拟电池充放电过程,能够获取局部不均匀性、电极微结构极化特征等详细全面的信息,模拟结果也更接近实验结果。

获取三维电极结构信息的实验方法:


- 1. FIB-SEM 成像技术: 电极活性物质、碳胶相(导电剂 和粘结剂)和孔隙三相微观结构
- 2. 同步加速 X 射线成像技术
- 3. 纳米X 射线断层扫描技术
- 4. 交流阻抗谱技术: 电极厚度、粒径分布、孔隙迂曲度和 电解液/电极界面等微观结构特征
- > 孔隙率与比能量
- **> 极片厚度与反应深度**
- 力学强度与结构应力

展望2

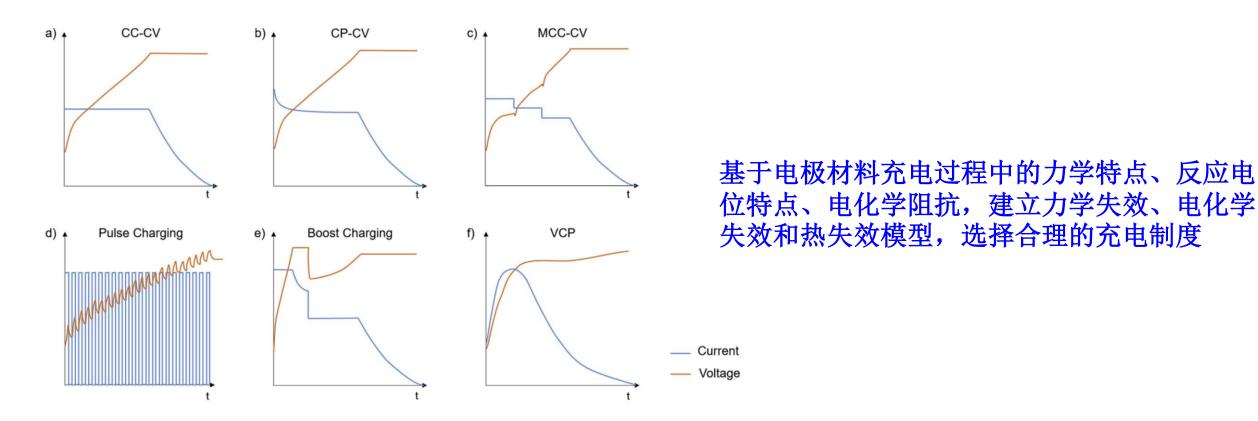
极片结构的精细化设计


- > 对极片组成及孔隙进行梯度设计
- > 基于颗粒形貌和极片技术调控迂曲度: 挤压烧结法、电极浆料定向冷冻法、磁场控制涂布法

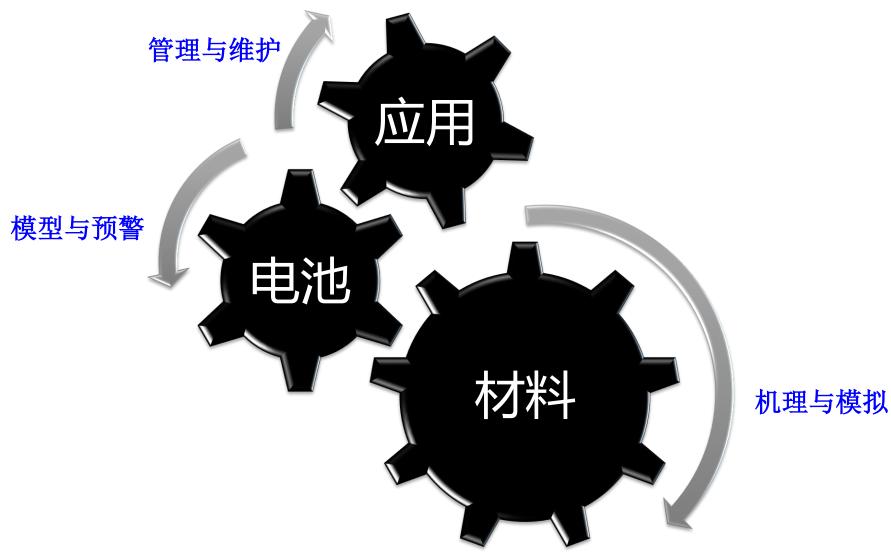
析锂检测与析锂传感器

电池充电安全

□ 充电不当导致电池热失控的本质原因: 负极充电析锂负极析出热稳定性低的金属锂,在微小的热冲击下产生大量热量,直接诱发热



- 1)锂离子电池析锂机制(锂是如何析出的?如何提升充电速度,并减少析锂量?)
- 2)析锂诱发的电池热失效机制(金属锂与电解液的产热反应机制?)
- 3) 电池析锂检测方法(如何及时检测析锂?)


展望4

依据电池特性设计合理的快充电制度

动力锂离子电池快速充电面临的科学与工程问题

快充技术小结-1: 材料

- 1. 开发新型负极,解决负极析锂和产热的问题:高比容量、大粒度、电位优化; 电池负极是快充的瓶颈,导致容量低、析锂等问题。界面浸润性、极片厚度和材料取向分布 是主要原因。负极材料普遍密度低,采用高比容量材料以降低极片厚度、提高颗粒粒度以减 小曲折度有利于同步提高比能量和快速充电;高锂化电位有利于避免析锂。
- 2. 通过材料结构设计,提高多孔极片中的离子传输;

多孔极片中的锂离子传输的是快充的速控步。提高电解液有效离子电导率,可以通过提高温度、研发高锂离子电导率的电解液;通过材料结构设计,优化孔道结构、降低极片曲折度,例如导电剂。

3. 电池老化过程中多孔结构的失效有待重视。

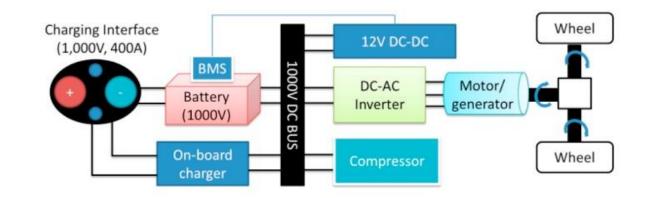
ww年,能xm委命的:co茶

快充技术小结-2: 电芯与系统

电芯层面:

- 1. 充电对现有锂离子电池体系老化的影响机制和定量描述有待重视;
- 2. 研究检测/抑制锂析出技术,解决安全问题。
- 3. 研发减少高能量电池快速充电发热的技术。

系统层面:


- 1. 开发电芯散热新技术,确保电芯运行温度低于52℃、电芯内部温差小于2℃。
- 2. 1000 V电压相关的电器安全和绝缘问题。
- 3. 研究快速充电方法,减小快速充电对系统寿命的影响。
- 4. 研究新的控制和电池管理算法,低成本有效管理大量电芯。
- 5. 开发有效热管理新技术,确保系统寿命。

快充技术小结-3:车辆与基础设施

电动车动力传动系统层面

- 1. 新的电动车动力传动系统架构。
- 2. 相关电子器件的体积、重量、成本:连接电缆、半导体...
- 3. 1000 V电压相关的电器安全和绝缘问题。

配套设备设施层面

- 1. 研发新型设备和材料,降低产热。例如,电缆。
- 2. 开发全自动充电桩。开发超大功率无线充电桩。
- 3. 建立充电兼容标准,降低超级快速充电的推广难度。

Thanks for your attention

www.hexmgroup.com

微信13701010570